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Abstract. The Apuan Alps are characterized by frequent
heavy rainfall. In several cases this triggered many shal-
low landslides (soil slips). With the aim of contributing to
the landslide hazard evaluation of the southern Apuan Alps
(upper Versilian area), a detailed analysis of the main plu-
viometric events was carried out. Data recorded at the main
raingauge of the area from 1975 to 2002 were analysed and
compared with the occurrence of soil slips, in order to exam-
ine the relationship between soil slip initiation and rainfall.
Some thresholds for soil slip-debris flow activity in terms
of mean intensity, duration and mean annual precipitation
(MAP) were defined for the study area.

1 Introduction

Due to its geographical position and conformation (Fig. 1),
the Apuan Alps region is one of the rainiest in Italy (more
than 3000 mm/year) and is frequently hit by severe rain-
storms. In many cases, the storms triggered shallow land-
slides (soil slips), which exposed the population to serious
risks. The 19 June 1996 catastrophe triggered about 1000
soil slips, flows and floods in the Versilia plain and caused
14 deaths (D’Amato Avanzi et al., 2004).

Besides the high frequency of strong rainfall events, the
Apuan-Versilian territory is characterized by high vulnera-
bility. This is increased by tourist pressure in the area and
the marble working. Therefore, it is extremely important for
the local municipal administrations and civil protection agen-
cies to have efficient emergency plans, in order to evacuate
the population in time.

A detailed analysis of the main pluviometric events was
carried out with the aim of contributing to the landslide haz-
ard evaluation of the southern Apuan Alps. Data recorded at
the raingauge of the area from 1975 to 2002 were analysed
and compared with the occurrence of the shallow landslides.
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In this way it was possible to examine the relationship be-
tween soil slip initiation and rainfall.

2 Critical rainfall in the southern Apuan Alps

The concept of pluviometric threshold was introduced by
Campbell (1975) and theorized by Starkel (1979) as a dura-
tion/intensity relationship. Many attempts, generally defined
on the basis of an empirical approach, have been made to
determine the minimum rain height or intensity required for
triggering landslides (e.g. Caine, 1980; Fukuoka, 1980; Govi
and Sorzana, 1980; Cancelli and Nova, 1985; Crozier, 1986;
Cannon and Ellen, 1988; Jibson, 1989; Au, 1998; Crosta,
1998; Au, 1998; etc.).

In the southern Apuan area, the most important prob-
lems regarding slope stability result from the shallow land-
slides. They are triggered by very intense rainstorms (about
325 mm/4 hr with maximum intensity of 158 mm/hr during
the June 1996 event). However, less intense but prolonged
rainfall sometimes is sufficient to induce the failures. For
example, on 6 November 2000 shallow landslides were trig-
gered by 160 mm/13 hr (max intensity 30 mm/hr). In this
case, a large antecedent rainfall amount was available (al-
most 600 mm within one month) and it drastically reduced
the critical threshold.

2.1 Work methodology

With the aim of identifying the critical rainfall thresholds for
soil slips, all the main rainfall events occurred in the south-
ern Apuan area in the 1975–2002 period were analysed. The
Retignano raingauge was taken as a reference (440 m a.s.l. –
Fig. 1), because it was the only station equipped with pluvio-
graphic instrument from 1975 to 1996, while it became an
electronic raingauge from 1996 onwards.
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Figure 1. Location and isohyet map of the study area. 
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Fig. 1. Location and isohyet map of the study area.

The research identified 152 significant rainfall events; for
all the events collected, a research was carried out into the
effects produced. This was done by means of verification of
local Municipal Administrations, newspapers, and on the ba-
sis of the eye witness evidence. Among these events, at least
12 rainstorms triggered several soil slips. For each event
analyzed, the following parameters were collected: rain-
fall amount (mm), duration (hours), mean intensity (mm/hr),
mean annual precipitation (MAP-mm).

The 152 events investigated were subdivided into three
groups on the basis of the extents of the effects caused by
the rainstorms: events that induced several shallow land-
slides and floods (events A in the following graphs); events
that locally induced some shallow landslides and small floods
(events B); no information about the effects induced (events
C). For the first group the information on the effects pro-
duced were very clear: many landslides and floods and, in
some cases, also deaths (8 June 1984 [2 deaths], 11 July 1992
[2 deaths], 22 August 1992 [1 death], 6 November 1994, 19
June 1996 [14 deaths] and 6 November 2000). Nevertheless,
the 1984 event was anomalous considering the data of the
Retignano station. In fact, numerous soil slips were triggered
by the rainstorm in a zone 6–7 km far from the raingauge.
The instrument recorded only 26.0 mm in 4.5 h, which leads
us to presume that Retignano station was not probably suit-
able to describe the event correctly or it was out of order.
Unfortunately, extremely concentrated and localized events
are typical of the area. As a consequence, the 1984 event
was indicated in the graphs, but was not considered in the
definition of the threshold curves.

Table 1. Distribution of the events (A, B, C) in each defined stability
field.

Stability field Intermediate Instability field

A event (%) 0 20.0 80.0
B event (%) 0 100.0 0
C event (%) 59.5 39.8 0.7

2.2 Duration/intensity curves

A significant result emerged from the duration/intensity re-
lationship (Fig. 2). Separating events that triggered sev-
eral soil slips (events A), events which triggered a few soil
slips (events B) and events that did not cause significant ef-
fects (events C), two curves (threshold curves) are recognis-
able (Fig. 2a): a lower one (I=26.871 D−0.638) and an upper
curve (I=85.584 D−0.7809). The curves are sufficiently def-
inite for D≤30–35 h and I≤40–50 mm/hr (lower curve) and
for D≤20–25 h and intensity I≤50–60 mm/hr (upper curve).
The exponential curves are individuated on the basis of an
empirical approach.

Considering only the events with D≤12 hr (Fig. 2b), typi-
cal of the area, the curve equations become I=38.363 D−0.743

(lower curve) and I=76.199 D−0.6922 (upper curve), respec-
tively.

In the definition of the threshold curves there are some ex-
ceptions: for example, events A in the field fell between the
two curves, and so on. This is perhaps due to the utilization
of only one station.

With regard to the Fig. 2a and excluding the June 1984
event, the probability that each kind of event (A, B, C) falls
in each defined stability region could be estimated (Table 1).
In particular, good results are obtained for A and B events,
while a more significant error concerns C events (39.8% falls
in the intermediate field).

2.3 Normalization

Several Authors (e.g. Govi and Sorzana, 1980; Cannon and
Ellen, 1988) asserted that each area is in equilibrium with its
usual climatic and pluviometric conditions, and related the
rainfall events with the mean annual precipitation (MAP), in
order to normalize the rainfall data.

For the Apuan area, the results of this normaliza-
tion were very interesting. Introducing the parameter
NSR (Normalized Storm Rainfall – Corominas, 2001),
namely the rainfall event/PMA ratio, the relationship inten-
sity/NSR (Fig. 3a) and duration/NSR (Fig. 3b) were anal-
ysed. Also in these graphs two threshold curves are rec-
ognizable (on the basis of an empirical approach), with
a good approximation. In the first case (Fig. 3a) the
equations are I=−1.4916 ln(NSR)+6.5471 (lower curve) and
I=−1.4812 ln(NSR)+14.183 (upper curve), respectively. In
the second graph (Fig. 3b), the equations are D=0.1974
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Figure 2. Duration/intensity relationship for all the 152 events recorded (a) and for events with 

D ≤ 12 hr (b). A lower threshold curve (grey) and an upper one (black) are recognizable. (A: 

events that induced several soil slips and floods; B: events that locally induced some soil slips 

and small floods; C: no information about effects induced). 
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Fig. 2. Duration/intensity relationship for all the 152 events recorded(a) and for events with D≤12 hr (b). A lower threshold curve (grey)
and an upper one (black) are recognizable. (A: events that induced several soil slips and floods; B: events that locally induced some soil slips
and small floods; C: no information about effects induced).
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Figure 3. Semi-logarithmic intensity/NSR relationship (a) and duration/NSR relationship (b) 

for all the 152 events recorded. A lower threshold curve (grey) and an upper one (black) are 

recognizable. (A: events that induced many soil slips and floods; B: events that locally 

induced some soil slips and small floods; C: no information about effects induced). 
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Fig. 3. Semi-logarithmic intensity/NSR relationship(a) and duration/NSR relationship(b) for all the 152 events recorded. A lower threshold
curve (grey) and an upper one (black) are recognizable. (A: events that induced many soil slips and floods; B: events that locally induced
some soil slips and small floods; C: no information about effects induced).

NSR+1.0711 (lower curve) and D=0.2032 NSR+5.1198 (up-
per curve), respectively.

In Figs. 2 and 3, the two curves could delimit, with a good
approximation, three fields of stability: stability (below the
lower curve), uncertain stability (between the two curves),
instability (above the upper curve).

3 Conclusions

In the Apuan Alps, a region particularly hit by severe rain-
storms and characterized by a high vulnerability, the knowl-
edge of the minimum rainfall amount for soil slip initiation
is very important. With this aim, a detailed analysis of the
pluviometric events was carried out. The data recorded from
1975 to 2002 were analysed and compared with the occur-
rence of soil slips.

Due to the lack of a close pluviometric network in the
study area, the rainfall data used to obtain critical thresholds
must be considered with caution (the 1984 event is a mean-
ingful example). However, very significant results emerged
from the duration/intensity, intensity/NSR and duration/NSR
relationships, always identifying two threshold curves, which
could separate field with different degrees of stability.

The research is still in progress. Further studies will be
carried out to obtain more information on the role of the
antecedent rainfall in the shallow landslide initiation. At
present, two monitoring stations, equipped with pluviome-
ters and piezometers, have been set up to verify and improve
the threshold found.

Edited by: L. Ferraris
Reviewed by: J. J. Egozcue and another referee

References

Au, S. W. C.: Rain-induced slope instability in Hong Kong, Engi-
neering Geology, 51, 1–36, 1998.

Caine, N.: The rainfall intensity-duration control of shallow land-
slides and debris flows, Geografiska Annaler, 62A, 23–27, 1980.

Campbell, R. H.: Soil slips, debris flows and rainstorms in the Santa
Monica Mountains and vicinity, Southern California, U.S. Geo-
logical Survey Professional Paper 851, 51 pp, 1975.

Cancelli, A. and Nova, R.: Landslides in soil and debris cover trig-
gered by rainfall in Valtellina (Central Alps-Italy), Proc. 4th Int.
Conf. & Field Workshop on Landslides, Tokyo, 267–272, 1985.

Cannon, S. H. and Ellen, S. D.: Rainfall that resulted in abundant
debris flows activity during the storm, Landslides, floods, and
marine effects of the storm of January 3–5, 1982, in the S. Fran-
cisco Bay Region, California, in: U.S. Geological Survey Profes-



24 R. Giannecchini: Rainfall triggering soil slips

sional Paper, edited by: Ellen, S. D. and Wieczorek G. F., 1434,
27–33, 1988.

Corominas, J.: Landslides and climate, Keynote lecture, 8th Int.
Symp. on Landslides, Cardiff, Galles, 4, 1–33, 2001.

Crosta, G.: Regionalization of rainfall thresholds: an aid to land-
slide hazard evaluation, Environmental Geology, 35 (2-3), 131–
145, 1998.

Crozier, M. J.: Landslides: causes, consequences and environment,
Routledge, 252 pp, 1986.

D’Amato Avanzi, G., Giannecchini, R., and Puccinelli, A.: The in-
fluence of the geological and geomorphological settings on shal-
low landslides, An example in a temperate climate environment:
the June 19, 1996 event in north-western Tuscany (Italy), Engi-
neering Geology, 73 (3-4), 215–228, 2004.

Fukuoka, M.: Landslides associated with rainfall, Geotechnical En-
gineering, 11, 1–29, 1980.

Govi, M. and Sorzana, P. F.: Landslide susceptibility as function of
critical rainfall amount in Piedmont basin (North-Western Italy),
Studia Geomorphologica Carpatho-Balcanica, 14, 43–60, 1980.

Jibson, R. W.: Debris flows in Southern Puerto Rico, Geol. Soc. of
America, 236, 29–55, 1989.

Starkel, L.: The role of extreme meteorological events in the shap-
ing of mountain relief, Geographica Polonica, 41, 13–20, 1979.


